Challenges in combining projections from multiple climate models

نویسندگان

  • RETO KNUTTI
  • REINHARD FURRER
  • CLAUDIA TEBALDI
  • JAN CERMAK
  • GERALD A. MEEHL
چکیده

Recent coordinated efforts, in which numerous general circulation climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multimodel ensembles sample initial conditions, parameters, and structural uncertainties in the model design, and they have prompted a variety of approaches to quantifying uncertainty in future climate change. International climate change assessments also rely heavily on these models. These assessments often provide equal-weighted averages as best-guess results, assuming that individual model biases will at least partly cancel and that a model average prediction is more likely to be correct than a prediction from a single model based on the result that a multimodel average of present-day climate generally outperforms any individual model. This study outlines the motivation for using multimodel ensembles and discusses various challenges in interpreting them. Among these challenges are that the number of models in these ensembles is usually small, their distribution in the model or parameter space is unclear, and that extreme behavior is often not sampled. Model skill in simulating present-day climate conditions is shown to relate only weakly to the magnitude of predicted change. It is thus unclear by how much the confidence in future projections should increase based on improvements in simulating present-day conditions, a reduction of intermodel spread, or a larger number of models. Averaging model output may further lead to a loss of signal— for example, for precipitation change where the predicted changes are spatially heterogeneous, such that the true expected change is very likely to be larger than suggested by a model average. Last, there is little agreement on metrics to separate ‘‘good’’ and ‘‘bad’’ models, and there is concern that model development, evaluation, and posterior weighting or ranking are all using the same datasets. While the multimodel average appears to still be useful in some situations, these results show that more quantitative methods to evaluate model performance are critical to maximize the value of climate change projections from global models. Corresponding author address: Reto Knutti, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland. E-mail: [email protected] 15 MAY 2010 K N U T T I E T A L . 2739 DOI: 10.1175/2009JCLI3361.1 2010 American Meteorological Society

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improve Each Other?

We approach the problem of adaptively combining the predictions of an ensemble of seasonal climate models as a Multi-task Learning (MTL) problem. Unlike the traditional MTL setting, we only have a single functional task (combining the predictions ensemble members), where we consider multiple forecast periods from the same suite of models as our multiple learning tasks. Even though the same mode...

متن کامل

Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembl...

متن کامل

Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models

Recent studies show that multimodel combinations improve hydroclimatic predictions by reducing model uncertainty. Given that climate forecasts are available from multiple climate models, which could be ingested with multiple watershed models, what is the best strategy to reduce the uncertainty in streamflow forecasts? To address this question, we consider three possible strategies: (1) reduce t...

متن کامل

Spatial Projection of Multiple Climate Variables Using Hierarchical Multitask Learning

Future projection of climate is typically obtained by combining outputs from multiple Earth System Models (ESMs) for several climate variables such as temperature and precipitation. While IPCC has traditionally used a simple model output average, recent work has illustrated potential advantages of using a multitask learning (MTL) framework for projections of individual climate variables. In thi...

متن کامل

Integrated monitoring and information systems for managing aquatic invasive species in a changing climate.

Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, althou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009